
General announcements
– This unit’s assessment will be a bit different – we’ll be having 10 minute 

quizzes every other class (or so), each worth ~20 points.  These quizzes 
will be based on what we do in class, so it’s important that you (a) stay 
engaged and use class time wisely; (b) take close notes and review a little 
each night; and (c) ask questions early and often.

– The first quiz will be ??? and will cover what we do today and most of
tomorrow (rotational definitions and rotational kinematics, mayyyyybe a 
little bit about torque). 

– We will take a test at the end of the unit, but it will be scored a little
differently. More on that later. No official homework (to turn in) this
unit, because you‘ll need to be doing a little reviewing in between
quizzes anyways.



The Island Series:

2.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  A large disk is set spinning with constant speed.  The 
translational velocity of four points on the disk are identified along with each 
point’s position relative to the axis of rotation.  It is pointed out that at a 
minimum, two bits of information are required to characterize the motion of 
each point.  Your captor is a minimalist, so the question is, “How can the 
motion of all the points be characterized with only one bit of information?”  Put  
a little differently, if someone with another disk somewhere else on the island 
wanted to duplicate your disk’s motion, what single bit of information might 
you tell that that would allow them to accomplish the task? 



And following a radial line out from the center 
will produce bits that all have the same DIRECTION, but 
each bit will have a different velocity magnitude (as you 
get out farther, the velocities will go up).  

If you want to characterize the velocity of the 
particles of a spinning disk, alluding to their 
translational velocities is REALLY inefficient.  Bits of 
mass that have a common radius from the center of the 
rotation will all have the same velocity MAGNITUDE, 
but each bit’s velocity vector will have a different 
direction.

Solution to Island Problem

3.)

What IS common to all of the bits is their angular velocity.  
Each bit will sweep out the same number of radians per second
as the disk rotates.  

same velocity 
magnitude

same velocity 
direction

ω

ω

That is why using rotational parameters for rotating systems is 
so useful.  It is suffused with economy.  



Consequence…
Up until now, almost everything we’ve done has assumed bodies can be 
approximated as point masses, and nothing is actually rotating, not even the balls  
we’ve rolled down inclines as demonstrations (remember the loop-the-loop?). 

It’s time to look at the world of rotation.

What you are going to find is that for every principle, every law, every 
parameter, indeed every equation that exists within the world of translational 
motion, there exists a rotational counterpart.

What more, you are about to run into some very unexpected phenomenon, all 
of which needs to be predictable if our theories about rotation are correct.  For 
instance:



Consider a Wheel Suspended as Shown

https://www.exploratorium.edu/snacks/bicycle-wheel-gyro

By the end of this unit, you will have the tools required to, if not explain what’s 
going on, at the very least PREDICT that it should happen!

A wheel suspended from the ceiling is 
held motionless in the position shown.

What will happen when it is released?

One would expect it to just flop over . . . which it 
will do if you try it . . .

But get it spinning . . . 
What will happen when it is released?

In that case, you find what is called precession . . .



x

position

θ   (radians) ω    (rad/s) α   (rad/s2 )

rate of change of 
position

rate of change of 
velocity

v   (m/s) a   (m/s2 )x   (meters)
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a
v θ

ω
α

coordinate position translational velocity

angular position angular velocity

translational acceleration

angular acceleration



Position
• 𝛥θ = angular displacement (the angle through which a point on the body 

rotates). Measured in radians
– Reminder that 360° = 2𝛑 radians
– 1 radian is the angle subtended for an                                                                                       

arclength of 1 radius

• s = arc length (linear distance a rotating point moves)
• r = radius (measured from axis of rotation)

– Axis of rotation: the line around which the object is rotating—this is 
perpendicular to the plane of rotation

• How to connect rotational displacement and translational displacement?

= s



Rotational versus Translational 
Parameters

Definition of a radian?

θ = 1 radian

R s = R
If you lay out a one radius arc-length, the angle 
subtended is defined as one radian (see sketch). 

13.)

And what is the arc length associated with a       radian angle?

So what arc-length is associated with a 2 radian angle?

Δθ

And what arc-length is associated with a 1/2 radian angle?
s2 = 2R

s1/2 =
1
2

⎛
⎝⎜

⎞
⎠⎟
R

s = Rθ

where R’s units are meters per radian and units are in radians.θ 's



Taking the derivative of both sides yields:

   ds
dt

   =        R             dθ
dt

v (m/s) = R m/rad( )  ω  rad/sec( )

Taking the derivative of both sides again yields:

more commonly written as: v = Rω

more commonly written as:

These are NOT kinematic relationships! They work whether the acceleration is 
a constant or not.
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    dv
dt

   =       R              dω
dt

a (m/s2 ) = R m/rad( )  α rad/sec2( )

a = Rα

where v is the velocity of a point moving with angular 
velocity     upon an arc R units from the fixed center.ω

R
ω

v = Rω

Fixed point

or



Position: 𝛥x vs. 𝛥θ

This is not a kinematic relationship! This is a 
rotational definition and is true for any rotation.

• Imagine a bike wheel. As the wheel turns through 
some angular displacement 𝛥θ , it will also travel 
across the ground in a translational fashion:

q The arc length s of the rotation is the 
same as the linear distance the wheel’s 
center of mass travels in the same amount 
of time.

q The larger the wheel radius, the greater 
the arc length for any given angular 
displacement. Thus:  

s = r θ (and s is also = to linear distance x traveled along the ground)



• In translational motion, the rate of change of position is called velocity, in units 
of m/s.

• In rotational motion, the rate of change of position (aka angular displacement) 
is the angular velocity (𝛚) measured in rad/sec.
– It is NOT a double-u! It’s a Greek letter: omega.

• In equation form:  𝝎 = 𝜟𝜽
𝜟𝒕

(units are rad/sec)

Velocity

Remember that any point along a line on the disk 
rotates through the same angular displacement in 
the same time. Thus, the angular velocity of any 
point must be the same!
--> What does this mean about the translational
speed of each point?



Velocity: v vs. 𝛚
• We know the angular velocity (𝛚) of any point on the disk must be equal. 
• The translational velocity of each point, however, depends on its position 

relative to the axis of rotation (its radial distance).
• This translational velocity is also known as the tangential velocity, because this 

vector is perpendicular to the rotation of the circle!

§ The closer to the center, the slower each point has to 
move per unit time to achieve the same 𝛚. 

§ Farther out, points have to move faster to get through 
the same angular displacement in the same time. 

§ All this means is:

𝑣! = 𝑟𝜔



• By now you should know the drill. If a = change in v / change in t, 
then angular acceleration should be…?

• 𝛼 = !"
!#

(units are rad/s2)

• Similar to before, the tangential acceleration a and the angular 
acceleration 𝛂 can be related by:

• Since this is a circle, we ALSO have to worry about centripetal 
acceleration ac.  We know ac = vt2/r.
– This means there are two translational velocities that do two different things!
– Centripetal acceleration changes the direction (pulls into a circle)
– Tangential acceleration changes the velocity (speeds up/slows down 

rotation).

Acceleration

𝑎! = 𝑟𝛼



Some conceptual practice
• Mr. White and Mr. Fletcher are riding on a merry-go-round. Mr. White rides on the outer 

rim of the circular platform, and Mr. Fletcher rides halfway between the rim and the 
center of the platform. When the MGR is rotating at a constant angular speed, compare 
Mr. White’s and Mr. Fletcher’s angular and tangential speeds.

• Why is the launch area for the European Space Agency in South America and not in 
Europe?

Their angular speeds are the same, as both of them travel the same portion of the 
circle in the same time. Mr. White’s tangential velocity is twice Mr. Fletcher’s, 
however, because he is twice as far radially from the center (v = r𝛚).

The tangential velocity of the Earth is greater at the equator than it is closer to 
the poles – Europe’s radial distance from the axis of rotation is much smaller 
than the equator’s. This way, the satellite being launched (eastward, in the 
direction of rotation) already has some initial tangential speed (about 1700 m/s) 
which makes it easier to get into orbit (which requires a speed of about 8000 
m/s).



Kinematics

x1

body with initial velocity 
accelerates at a constant rate  
between            in time tx2 − x1

translation motion

x2 = x1 + v1 Δt( ) + 1
2
a Δt( )2

θ1

θ2

θ2 − θ1

v1 body with initial angular velocity 
angularly accelerates at a constant 
rate between           in time tθ2 − θ1

ω1

angular motion

Δx = v1 Δt( ) + 1
2
a Δt( )2or

or

ω2 = ω1 + αΔt

ω2
2 = ω1

2 + 2α Δθ( )

α =
ω2 − ω1

Δt
or

ω2
2 = ω1

2 + 2α θ2 − θ1( )

θ2 = θ1 +ω1 Δt( ) + 1
2
α Δt( )2 Δθ = ω1 Δt( ) + 1

2
α Δt( )2or

or

v2 = v1 + aΔt

v2
2 = v1

2 + 2a Δx( )

a = v2 − v1
Δt

or

v2
2 = v1

2 + 2a x2 − x1( )

x2

v1

7.)



Rotational kinematics problem (7.5)
• A dentist’s drill starts from rest and reaches 2.51 x 104 revolutions per minute in 

3.2 seconds with constant angular acceleration. Determine the drill’s:
– (a) angular acceleration
– (b) angular displacement during that interval

We know that 𝞈1 = 0 rad/sec and t = 3.2 seconds. We need to convert 𝞈2 into rad/sec:

2.51𝑥10!
𝑟𝑒𝑣
𝑚𝑖𝑛

2𝜋 𝑟𝑎𝑑
1 𝑟𝑒𝑣

1 𝑚𝑖𝑛
60 𝑠𝑒𝑐 = 2628 𝑟𝑎𝑑/𝑠𝑒𝑐

Now find 𝛂 using the angular velocity equation:

𝜔" = 𝜔" + 𝛼𝑡 ⟹ 𝛼 =
𝜔" − 𝜔#

𝑡 =
2628 𝑟𝑎𝑑/ sec− 0 𝑟𝑎𝑑/𝑠𝑒𝑐

3.2 𝑠𝑒𝑐 = 821
𝑟𝑎𝑑
𝑠"

Now find 𝛉 using either equation with angular displacement:

∆𝜃 = 𝜔#𝑡 +
1
2𝛼𝑡

" = 0 +
1
2 821

𝑟𝑎𝑑
𝑠" 3.2 𝑠 " = 4203 𝑟𝑎𝑑𝑖𝑎𝑛𝑠



The relationship                 is really code.  It is telling you three 
things:

 
!v = −(3m / s)î

 
!
ω = −(3 rad/sec)î

Rotational Vectors

You know how to decode the above expression.  The following is also a code.  

a.) the magnitude of the velocity (in this case, it’s 3 m/s); 

b.) the line of the velocity (the tells you the vector is along the x-axis, 
versus being along the y-axis or z-axis or some combination thereof); and 

c.) the + or – tells you the actual direction along the line (in this case, it’s 
in the NEGATIVE x-direction, versus the POSITIVE x-direction); 

î

8.)

The question is, “What three things does this coding tell you?”



The relationship                     tells you:ω = −(3 rad/sec)î

In short, though, if you know how to do the decoding, the notation is as simple as                          
.

a.) the magnitude of the angular velocity (in this case, it’s 3 rad/s); 

b.) the DIRECTION OF THE AXIS about which the angular velocity proceeds 
(this will be perpendicular to the plane of the motion, so an “ “ tells you the 
motion is in the y-z plane); and 
c.) the + or – tells you the whether the rotation is clockwise or counterclockwise, 
as viewed from the positive side of the axis (in this case, it’s NEGATIVE, so the 
rotation will be clockwise—more about this later). 

î

9.) 
!v = −(3m / s)î

Clarification concerning parts c above.  Both physics and standard mathematics 
use what is called a right-handed coordinate system.  That means that if you place 
your right hand along the +x direction and curl your fingers in the +y direction, 
your thumb will point in the +z direction.  The reason this is significant is that in 
doing so, you will be curling your fingers counterclockwise.  So if you want to 
characterize a body moving counterclockwise in the x-y plane, giving the direction 
as +k makes sense as that is the direction your thumb would point if you made the 
fingers of your right hand curl along the direction of motion.



Sign conventions with rotation
• So far, we’ve used linear coordinate systems, with + and – directions based on 

x and y axes.

• If you see 𝑣⃗ = (−3"
#
) ̂𝚤 , what does that mean?

• For rotational motion, we have a similar, but slightly different ”code.” We use a 
right-handed coordinate system for rotation: 
– The fingers of your right hand point along the +x ( ̂𝚤) axis
– You curl your fingers towards the +y ('𝑗) axis
– Your thumb points in the +z (*𝑘) direction

• Using this method, counterclockwise rotations are positive (because the axis of 
rotation is in the positive direction), and we define the direction by giving the 
axis of rotation

It’s a code! This code tells you three things: (1) the magnitude of the 
velocity is 3 m/s, (2) the velocity is along the ̂𝚤 (x) axis, and (3) it’s in the 
negative direction along that axis. 



Sign conventions with rotation
• Knowing this, what does this code tell you:  𝜔 = (−3 𝑟𝑎𝑑/ sec) ̂𝚤

(1) The magnitude of the angular velocity is 3 rad/sec
(2) The axis of rotation is along the x axis ( ̂𝚤 direction). – so the plane of rotation is 

the y-z plane
(3) The rotation is clockwise (fingers curl such that the thumb points in the - ̂𝚤

direction)

q A turntable (record player) is rotating as shown 
to the right (thanks, Mr. White!). The magnitude of 
its angular speed is 0.3 rad/sec. What is its angular 
velocity in vector form?

We know the magnitude is 0.3 rad/s. It’s rotating in the 
plane of the table (the x-y) and if we use our right 
hand and curl our fingers clockwise, our thumb points 
down into the table, which is the −*𝑘 direction. So the 
velocity is: 𝜔 = (−0.3 !"#

$
)*𝑘



Sign conventions with calculations
• Just like in linear kinematics, the signs of your displacement, velocity, and 

acceleration vectors in rotational kinematics matter. Determine the signs of 
your initial parameters properly, and things will work out. 
– If you want practice with these calculations before the quiz, there are a few 

problems on the next few slides you’re welcome to try, with numerical answers 
(not worked out solutions) following.



Rotational kinematics practice - 1
• A turntable rotates at -0.28 rad/sec. In 4 seconds, it reaches +0.20 

rad/sec.
– (a) What is the turntable’s angular acceleration?
– (b) How long will it take to reach +0.10 rad/sec?
– (c) What angular speed will it have after 0.3 seconds?
– (d) Through how many radians will it travel in 8 seconds? How many 

rotations is that?

α =
ω2 − ω1

Δt
θ2 = θ1 +ω1t +

1
2
αt2ω2

2 = ω1
2 + 2αΔθ



Rotational kinematics practice - 2
• A disk is rotating at -25 rad/sec and angularly accelerates at -9.8 rad/sec/sec. 

– (a) How far will the disk rotate in 2 seconds?
– (b) How fast (angularly) will the disk be moving after it rotates for 2 

seconds?
– (c) How far will the disk rotate between t = 1 and t = 3 seconds?
– (d) After 2 seconds, the acceleration changes to 3 rad/sec/sec. How long 

will it take for the disk to come to rest?
– (e) Without actually using the time, determine through how many radians 

the disk will turn during the time calculated in part (d). 
– (f) How many rotations is that?



Rotational kinematics practice - 3
• An auto whose wheel radius is 0.3 m moves at 15 m/sec. The car applies its 

brakes uniformly, slowing to 4 m/s over a 50-m distance.
– (a) What is the wheel’s final angular velocity?
– (b) What is the wheel’s initial angular velocity?
– (c) What is the angular displacement of the wheels as the car slows over this 

distance?
– (d) What is the wheel’s angular acceleration during the slow-down?
– (e) Using the information from (d), determine the car’s translational acceleration.
– (f) Without using the final angular velocity, determine how long was required for 

the slow down.
– (g) Knowing the final angular velocity, determine how long was required for the 

slow down (yes, this should end up the same as f).
– (h) Determine the angular displacement and the linear displacement of the 

wheels during the first 0.5 seconds of the slow down.



Rotational kinematics practice - answers

• Question 1:
– (a) +0.12 rad/sec/sec (b) 3.2 sec.              (c) -0.24 rad/sec               

(d) 1.6 rad = 0.25 revolutions

• Question 2:
– (a) -69.6 rad (b) -44.6 rad/sec (c) -89.2 rad

(d) 14.9 sec (e) -332 rad (f) 52.8 revolutions

• Question 3:
– (a) 13.33 rad/s (b) 50 rad/s (c) 166.6 rad (d) -6.97 rad/s/s        (e) -

2.09 m/s (f) 5.26 sec (g) 5.26 sec (h) 7.23 m



Point of contact on a rolling object
• Let’s consider a point on the edge of a rolling object, like a wheel:

q When the point on the edge of 
the wheel hits the ground, what is 
its instantaneous velocity?

The point is turning around in the 
y-direction, which means its y 
velocity is 0. It’s not sliding relative 
to the ground, either, so its x 
velocity is 0. At this instant, its 
overall velocity is 0 m/s!

We call this “rolling without slipping” – a major assumption in many 
problems. The “without slipping” part means we don’t have to worry about 
kinetic friction along the surface contact (which would really complicate the 
math). This also means that static friction must be preventing the sliding – this 
is how objects roll in the first place! 



As an additional bit of craziness, if you know the angular velocity 
about one point on a rotating object, that will be the the angular velocity about ALL 
points on the object.  How so?

18.)

ω

Consider a rotating platform with a chair at its center that 
is rigged to ALWAYS face toward the wall:

You sit in the seat.  It takes 10 seconds for the platform to 
rotate through one complete rotation.

a.) What does the motion look like from your perspective, 
assuming a constant angular velocity?

(It will move around you.)
b.) Relative to the axis you are sitting on, what will be the platform’s
angular velocity?

ω = 2π rad
10 sec

   = .2π rad/sec

the wall

chair



The chair is now placed at the edge of the platform.  It is 
still rigged to always face toward the wall.  Just as was the 
previous case, it takes 10 seconds for the disk to move 
through one rotation.  From your perspective, what does the 
motion look like, and what is the angular velocity of the disk 
about your position?

19.)

Following the motion as seen by you in the chair at the edge:

ω

the wall

chair

the wall

chair
You start facing away from the disk, 
seeing none of it (looking at the wall).

As the disk rotates, you continue to face 
the wall and the disk begins to come into 
view on your right. In other words, the 
disk appears to be rotating around the axis 
upon which you sit.

at start as time proceeds



Progression 
of motion 
from watcher’s 
perspective 
(remember, the 
watch is 
ALWAYS facing 
the wall!).

20.)

Time 1

Time 2

Time 3

Time 4
And what is the 
angular velocity 
of the disk about 
your vantage 
point?

ω = 2π rad
10 sec

   = .2π rad/sec

You will sweep out radians in 
10 seconds, so you’ll get:

2π
The same as about 
the central axis!!!!!



The point: The amount of time it takes the for the platform to rotate around 
you is the same in both the “center seat” situation and the “edge seat” situation.  
Additionally, the angular displacement in both cases during one revolution’s 
worth of time is 2π radians.  

21.)

Sooooo (in other words), if the object appears to be rotating around you, the 
angular velocity you observed will be the same no matter where on the platform 
you are standing. 

Translation: If you know the angular velocity of an object about any point on 
the object, you know the angular velocity about any other point on the object.



Angular velocity on a disk 
(Ms. Dunham’s version)

• Let’s look at what a rotation looks like from different points of view (e.g. 
axes of rotation) based on what we just saw.

• Imagine a person sitting on a disk, on a chair that is fixed so that it always 
faces the same direction. The disk rotates through 1 rotation in 10 seconds. 
What does the person see?

Wall the chair faces

platform as seen
from above

The person sees the platform rotate around 
them at 𝜔 = %& !"#

'( $)*
.  



Angular velocity on a disk
• Now the chair is placed so that it’s on the edge of the platform, but still faces the 

same direction at all times. The disk again rotates through one rotation in 10 
seconds. Now what does the person experience?

Wall the chair faces

platform as seen
from above

The person sees the platform rotate around 
them at 𝜔 = %& !"#

'( $)*
, just like before (same 

rotation in same time). This time, though, 
they see the entire disk rotate out from their 
right, in front of them, and away to the left. 

The point is that you could pick ANY point 
on the disk and observe the rotation from 
the perspective of that point, and the 
angular velocity of the disk about that point 
would be the same as the angular velocity 
of the disk about any other point on the disk.  

EVERY POINT WILL SEE THE SAME ANGULAR VELOCITY ABOUT ITSELF AS 
EVERY OTHER POINT!



Point of contact on a rolling object

When the point reaches the height of the axle, it will be moving at the 
speed of the car (v=R𝞈). When it reaches the top of the wheel, it will be 
going twice the speed of the car (v = 2R𝞈). This cycle repeats – crazy!

• Back to the point on the edge of a wheel – let’s follow it around the wheel 
as it rotates. We know the point’s velocity is 0 m/s at the point of contact, 
but what happens as it moves to the “top” of the wheel on, say, a car on the 
freeway going 60 mph?



But why is this important, really?

21.)

Consider a ball rolling across a table.  It’s 
center of mass has some velocity       and all of 
the body’s mass is rotation about the center of 
mass with some angular velocity    .  So how 
do we relate those two parameters (and how do 
we justify that relationship)?

vcm

ω

We only have one relationship between the angular velocity of a 
mass moving in a circular path and its instantaneous velocity in 
that motion, and that is              , but that requires rotation around a 
fixed point.

v = Rω

vcm

ω

v = Rω
ω

R

But if the contact point of the rolling ball is 
instantaneously fixed (zero velocity), and if the angular 
velocity about the center of mass is the same as the 
angular velocity about that fixed point (instantaneously), 
then it follows that vcm = Rω

vcm = Rω

ω

R

zero velocity pointThis is important!!!



Quiz 1
• We have now covered what will be on Quiz 1 tomorrow.
• Be able to:

– State the rotational counterparts of translational motion (e.g. position, 
velocity, acceleration) in both systems and how they're related (e.g. v = r𝛚)

– State the rotational kinematic equations and use them to solve problems 
like the ones from class/in the ppt

– Interpret unit-vector notation for angular velocity and how we determine 
direction

– Explain any examples we've talked about in class (e.g. rolling about point 
of contact)

• Anything after this slide is not on quiz 1


